rvices

arc
advanced £
research

computing

sel

Effective Use of Clusters
2025-2026

The ARC Team

https://www.arc.ox.ac.uk

https://www.it.ox.ac.uk

https://www.arc.ox.ac.uk
https://www.it.ox.ac.uk

%iTH

Introduction

Effective Use of Clusters Introduction

arc e
Before we start... =] .I:

computing

® Glossary

» core = unit that does the work (sometimes use CPU as a synonym)

» processor = collection of cores in a single package all sharing the same memory
» node = a collection of processors all sharing the same memory

» interconnect = the network in a machine that joins together the separate nodes

Note: each node has its own memory and cannot directly ‘see’ another node’s memory.

¢ Distinction between processor, process and thread

» processor = a physical piece of hardware
» process = an instance of a running program (software)

* essentially it has two components: instructions to execute and associated data
* in parallel programming we often have multiple instances (processes) of the same program...

» a process always consists of one or more threads of execution

3/79

Models of Parallelism ac 2
Distributed Memory

Effective Use of Clusters Introduction

mmﬁﬁ

Distributed Memory Programming Model:

multi-core system, each core has its own private memory

local core memory is invisible to all other processors

agent of parallelism: the process (program = collection of processes)
exchanging information between processes requires explicit message passing

the dominant programming standard: MPI

Distributed Memory Hardware:

conceptually, many PCs connected together (traditional Beowulf cluster)
current approach:

» multi-core computer nodes (high-density blades) with own memory
» high-bandwidth, low-latency network connection

» off-the shelf modular technology (high-end CPUs, standard hard disk)
» accounts for the largest HPC systems

Distributed Memory ARC systems: the ARC cluster (but any machine can be programmed using
this model)

4/79

Models of Parallelism ac 2
Distributed Memory

Effective Use of Clusters Introduction

mmﬁﬁ

Shared Memory Programming Model:

multi-core system

each core has access to a shared memory space

agent of parallelism: the thread (program = collection of threads)

threads exchange information implicitly by reading/writing shared variables

the dominant programming standard: OpenMP

Shared Memory Hardware:

conceptually, a single PC, with a large memory and many cores

accounts for both small and inexpensive systems (desktops) and very large and expensive
system (with very expensive high bandwidth memory access)

Shared Memory ARC Systems: HTC cluster and any single node of the ARC cluster.

5/79

Effective Use of Clusters Introduction

Distributed Memory v. Shared Memory
Distributed Memory:
® Can scale to any number of cores

® Requires special tools to compile and run the code
» Typically mpicc or mpif90 to compile, mpirun to run it

® Can be harder to program that shared memory
* But will generally perform better if done well
* And it teaches good parallel programming ‘habits’

6/79

Effective Use of Clusters Introduction

Distributed Memory v. Shared Memory SiL%

Shared memory:
¢ |s usually limited to the number of cores in a node
» Can overpopulate, good for debug, bad idea for performance

Generally just requires an extra flag on the compiler

® Can be easier to program than distributed memory
It is often hard to get good parallel performance
» Sharing things is not good for parallelism...

® Can easily let people be a bit sloppy when programming...

6/79

%iTH

Batch Scripts

Effective Use of Clusters Batch Scripts

Batch Scripts grg T

* Now we know about the types of parallelism we can structure our batch script in such a
way that we can efficiently use the resources.
® For the clusters provided by ARC we need to know that...
» Each node has typically 48 cores
* Also remember the first part of the script reserves resources for you, while the second
says what you want to do with it...

8/79

Effective Use of Clusters Batch Scripts

Some quick solutions — ARC/MPI

Example for HPC-type job script:
e parallel (MPI) application
* single large problem, too large for single node
* one single input file
® job uses many compute nodes

* For best resource usage use multiple of 48 cores

N~ @
AT
azz I

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=48
#SBATCH --mem-per-cpu=2G
#SBATCH --time=00:10:00
#SBATCH --partition=devel
#SBATCH --job-name=myjob

module load mpitest/1.0
mpirun mpihello

9/79

Effective Use of Clusters

Some quick solutions — HTC

Example for HTC-type job script:

serial (or multi-threaded) application
parametric study, many input files
processing in batches of 48

each job uses 1 compute node

ideally, processing should be balanced

Batch Scripts

10

11

12

13

N~ @
AT
azz I

#!/bin/bash

Reserve 1 node for 10 hours
#SBATCH --walltime=10:00:00
#SBATCH --nodes=1

Run 48 jobs in the background
for ID in {1..48}; do

serialApp test_$ID.dat &
done

Wait for all the jobs to complete
wait

10/79

Effective Use of Clusters Batch Scripts

Array Jobs

* Job arrays allow you to submit the same batch
script many times over.

[user@arc-login ~]$ sbatch -array=1-10 myscript.sh ,

® By default you can distinguish between members
of the array with the $SLURM_ARRAY_TASK_ID
environment variable. For example we could
modify the previous example to use multiple
directories based upon this variable...

job_name.1/test_1.dat .. test_48.dat

job_name.10/test_1.dat .. test_48.dat

10

11

#!/bin/bash

#SBATCH --walltime=10:00:00
#SBATCH --nodes=1
cd job_name.$SLURM_ARRAY_TASK_ID
for ID in {1..48}; do

serialApp test_$ID.dat &

done

wait

11/79

ac e
Array Jobs o=l 'I:

Effective Use of Clusters Batch Scripts

computing

The main use is to allow the HTC user to use more than one node
» However there is no reason why an MPI user can’t use them
And also note there is no performance difference from submitting each of the job
members individually
The main reason is convenience
» Can submit all with one command
» Can use scancel to cancel all the jobs with one command
Strong recommendation:
Don'’t use very large job arrays, if things go wrong things can go VERY wrong!
» Do you want emails from each of 10000 failing jobs all at the same time?

12/79

Effective Use of Clusters Batch Scripts

ac e
Load Balancing and Array Jobs e l.I:

adval
s
‘computing

* When we pack jobs up into groups of 48 the time taken is determined by the one that
takes the longest

* This can cause efficiency problems if one or two of the jobs take very much longer than
the others as you will have to wait for the longest to complete irrespective of how quick
the others are.

* In other words you want the group of 48 to be load balanced
¢ Not much you can do if you just have 48 jobs

® But if you are using a job array try to make each member of the array as balanced as
possible

» You will generally have some kind of feeling which runs are quick to complete and which are
slow, so group the quick with the quick and the slow with the slow

® 5o a bit of thought can help your efficiency quite a lot!

13/79

Effective Use of Clusters Batch Scripts

Hybrid OpenMP/MPI Jobs gc l T

ices

servi

Some applications can use MPI for communication between nodes and OpenMP for
parallelism within the node. This Hybrid type of jobs can be handled as follows:

As an example if we want to use 2 nodes, with 1 MPI task per node and 12 OpenMP threads as
the resources should be:

#!/bin/bash

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=12

module load mpitest

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

O N oG A W N =

10 mpirun --map-by numa:pe=${SLURM_CPUS_PER_TASK} mpisize

Hello from host "arc-c303". This is MPI task 1, the total MPI Size is 2, and there are 12 CPU core(s)
allocated to *this* MPI task, these being { € 1234567891011 }
Hello from host "arc-c302". This is MPI task @, the total MPI Size is 2, and there are 12 CPU core(s)
allocated to *this* MPI task, these being { € 1234567891011 }

14/79

Effective Use of Clusters Batch Scripts

Multi-threaded R or Python Jobs

Both R and Python have relatively easy to use multi-threading libraries available.

When using an script which uses these it is important to use the correct SLURM resource
directives.

As an example if we want to use 48 cores on 1 node, the resources should be:

1 #!/bin/bash

2 #SBATCH --nodes=1

3 #SBATCH --ntasks-per-node=1
4 #SBATCH --cpus-per-task=48

15/79

EIiTH

GPUs

Effective Use of Clusters GPUs

GPUs on HTC Ei[f iT

HTC has a wide range of GPU accelerator resources available
* An up-to-date list of GPUs is available here:
https://arc-user-guide.readthedocs.io/en/latest/arc-systems.html#gpu-resources

GPUs are highly contended resources

» Some are co-investment resources which may be reserved at certain times.
» The NVIDIA drivers on the compute nodes are updated twice per year (May/November).

* The process requires nodes to be taken offline.

17/79

https://arc-user-guide.readthedocs.io/en/latest/arc-systems.html#gpu-resources

%iTH

Application Containers

Effective Use of Clusters Application Containers

N @
What is a container? Ei[% 1 .I:
* A Unix operating system is broken into two primary components, the kernel space, and
the user space.
» The kernel talks to the hardware, and provides core system features.
» The user space is the environment that most people are most familiar with. It is where
applications, libraries and system services run.
e |f you have access to a machine running CentOS (like the ARC clusters) then you cannot
install software that was packaged for Ubuntu on it, because the user space of these
distributions is not compatible.

® Containers change the user space into a swappable component. This means that the
entire user space portion of a Linux operating system, including programs, custom
configurations, and environment can be independent of whether your system is running
CentOS, Fedora etc., underneath.

* Software developers can now build their stack onto whatever operating system base fits
their needs best, and create distributable runtime environments so that users never have
to worry about dependencies and requirements, that they might not be able to satisfy on
their systems.

From: https://apptainer.org/docs/user/main/introduction.html#why-use-containers
19/79

https://apptainer.org/docs/user/main/introduction.html#why-use-containers

Effective Use of Clusters Application Containers

s

A e
Application Containers gﬁgﬁ

computing

4

servi

* The ARC clusters have Apptainer (formerly Signularity) installed — no need to load a
module.
* Why not Docker?
» Docker users a client-server model which cannot integrate with the SLURM batch system.
» It requires superuser privileges to run
» Docker container data is isolated from the host — so no access to data or host drivers.
* Apptainer is designed specifically for HPC environments

» The container runs as a ‘child’ of the current shell
» Allows access to all host resources including storage, Infiniband, GPUs etc..

20/79

Effective Use of Clusters Application Containers

Application Containers — cont... Orc §

fsa
com

Simple to run published containers:

[user@arc-interactive ~]$ apptainer remote add --no-login -n sylabsed cloud.sylabs.io

[user@arc-interactive ~1$ apptainer run library://sylabsed/examples/lolcow

INFO: Downloading library image

79.9MiB / 79.9MiB [] 100 % 20.1 MiB/s @s

/ "You have been in Afghanistan, I \
| perceive." |
| |
| == Sir Arthur Conan Doyle, "A Study in |
\ Scarlet" /

N PAVAN
=== |

21/79

Effective Use of Clusters Application Containers

arc # -
Application Containers — cont... Pt ZE

Simple to run published Docker containers:

[user@arc-interactive ~]$ apptainer run docker://sylabsio/lolcow: latest

INFO: Converting OCI blobs to SIF format

INFO: Starting build...

Getting image source signatures

Copying blob 16ec32c2132b done

Copying blob 5ca731fc36¢2 done

Copying config fd@daa4d89 done

Writing manifest to image destination

Storing signatures

2025/05/02 13:16:01 info unpack layer: sha256:16ec32c2132b43494832a05f2b027a822479f8250c173d0ab27b3de78b2f058
2025/05/02 13:16:02 info unpack layer: sha256:5ca731fc36c28789c5ddc3216563e8bfca2ab3eal0347e07554ebbalc953242e
INFO: Creating SIF file...

< Fri May 2 13:16:08 BST 2025 >

22/79

Effective Use of Clusters Application Containers

Application Containers — cont... Orc ZT (

reseurc

Apptainer containers are compatible with MPI and NVIDIA GPUs

* You need to ensure that the NVIDIA driver version inside the container matches the
version on our compute nodes.

¢ See the following link for the Apptainer documentation:
https://apptainer.org/docs/user/main/

* Note: Apptainer was formerly known as Singularity

® Containers are unlikely to be as efficient as code built natively on the system. This is the
cost of convenience.

https://arc-software-guide.readthedocs.io/en/latest/apps/arc_apptainer.html
23/79

https://apptainer.org/docs/user/main/
https://arc-software-guide.readthedocs.io/en/latest/apps/arc_apptainer.html

%iTH

Memory Efficiency

Effective Use of Clusters Memory Efficiency

Identifying & Fixing Memory Issues

* The most common issue: An application runs out of memory.
There are things you can do...

» Use squeue to identify machines job is running on.
» ssh to one of those machines, and use the Linux top command to examine process resources.

If memory is the problem. Firstly ensure you are requesting enough memory using the
#SBATCH --mem directive.
You can also waste cores to gain more memory per process.

» Most machines have 48 cores and usable 360 GB so this is approx. 7.5 GB per core.
If you use a whole node and 24 cores you now have 15 GB per process.

25/79

Effective Use of Clusters Memory Efficiency

Identifying & Fixing Memory Issues orc ZT

reseurc

top - 08:07:09 up 6 days, 21:12, 2 users, load average: 10.01, 2.79, 1.00
Tasks: 662 total, 5 running, 657 sleeping, 0 stopped, @ zombie

%Cpu(s): 2.1 us, 0.1 sy, 0.0 ni, 95.8 id, 0.0 wa, 1.9 hi, 0.1 si, 0.0 st
MiB Mem : 386398.6 total, 368922.7 free, 15453.6 used, 2022.2 buff/cache

MiB Swap: 1908.0 total, 938.4 free, 969.6 used. 365768.2 avail Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2056621 ouitd554 20 0 1641888 1.1g 23248 R 98.0 0.3 0:28.68 mpiprimes
2056648 ouit@554 20 @ 2880696 180980 23320 R 4.0 0.0 0:13.84 mpiprimes
2056631 ouit@554 20 @ 2993992 165092 23292 S 3.6 0.0 0:13.11 mpiprimes
2056634 ouit@554 20 @ 2889096 167968 23056 S 3.6 0.0 0:13.25 mpiprimes
2056661 ouit@554 20 @ 2998192 163488 23188 S 3.6 0.0 0:14.93 mpiprimes
2056662 ouit@554 20 @ 2855516 185188 23164 S 3.6 0.0 0:14.96 mpiprimes
2056665 ouit@554 20 @ 2905872 183776 23184 S 3.6 0.0 0:15.14 mpiprimes

26/79

Effective Use of Clusters Memory Efficiency

N @
Identifying & Fixing Memory Issues %L% l];

MPI example

® 7.5GB per core
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=48
#SBATCH --mem=0

® 15GB per core
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=24
#SBATCH --mem=0

e Other combinations are available...

27/79

Effective Use of Clusters Memory Efficiency

Identifying & Fixing Memory Issues e

computing

Threaded example

® 7.5GB per core
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=48
#SBATCH --mem=0

® 15GB per core
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1

#SBATCH --cpus-per-task=24
#SBATCH --mem=0

28/79

Effective Use of Clusters Memory Efficiency

N @
Identifying & Fixing Memory Issues 9;5[% l];

Requesting exclusive access to node resources...
°* MPI|

#SBATCH --nodes=2
#SBATCH --ntasks-per-node=2
#SBATCH --exclusive

® Threaded

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=24
#SBATCH --exclusive

29/79

EiTH

Improving Performance

Effective Use of Clusters Improving Performance

ac ¢
What else can we improve e l.I:

computing

® There are a number of other ways to generate your results faster on a cluster:

» Make the program run faster by either better use of the compiler or libraries
» Better use of the disks

» Using an appropriate number of cores for your MPI or OpenMP program

» Use of area specific or application specific knowledge

* The first three we'll discuss in the following sections.
» We will also cover how to measure parallel performance.
® The last is a huge area and mostly beyond what we cover today

» Note especially for MPI programs there are often application specific ‘tricks’ that can help
you obtain your answer more efficiently on a cluster

31/79

EiTH

Compilers

Effective Use of Clusters Compilers

s

N~ @
Programming Languages gﬁgﬁ l

computing

4

servi

Programming languages for scientific computing:
* Fortran and C account for most computation intensive codes

» computation engines of many applications
» Fortran is more ‘natural’ than C for scientific computing

* use Fortran 95 or later, Fortran 77 is dead!
» performance libraries are written in C (FFTW) or Fortran (LAPACK)
o C++
» OOP allows (it is claimed) better software design and re-use of code
° JAVA, C#, etc.
» normally only used for front-ends and GUIs, etc.
¢ Matlab, Python

» interpreters, interactive use (data inspection, plotting capabilities)
» numerically intensive parts written in C/Fortran (mex functions, modules)

33/79

Effective Use of Clusters Compilers

ac e
Compiled Languages e l'I:

Fortran, C, and C++ are compiled
¢ the computer cannot understand the program (human readable) directly

* the compiler is a tool used to translate the whole program into the instructions that a
computer can understand

* there are many ways to do this translation; how fast the resulting program runs will
depend upon how ‘good’ a job the compiler does

Compare with Matlab, Python, and R
* interpreted languages

® again, a tool is required to turn the program into something the computer can
understand, but it is done one ‘line’ at a time
» easy on the tool and convenient in some ways (e.g. what if your program is 1000s of lines
long and you change one line only?)
» but typically much lower performance than compiled programs

34/79

Effective Use of Clusters Compilers

Making the most of compilers

So, we want our program to run as fast as possible

There a two major ways we can affect its performance via the complier:

¢ the choice of compiler, and

¢ the use of compiler (i.e. the choice of compiler flags)

35/79

Effective Use of Clusters Compilers

Compiliers Sirf l T

On the ARC systems, several compilers are available.

* The GNU compiler collection (standard Linux compilers — available everywhere and free):
gce/g++/gfortran

® The Intel compiler suite:
icc/icpe/ifort

® The Portland Group compilers:
pgcc/pgCC/pgfoe
The Portland Group compilers are now part of the NVidia HPC toolkit.

36/79

Effective Use of Clusters Compilers

N~ @
Choosing the compiler (base) IS 1 .I:

adval
s
‘computing

How to choose which compiler you are using varies from system to system, but on the ARC
cluster we use environment modules, which are a general method to manage software
installations.

For instance on ARC systems the following will pick versions of the appropriate compiler:

module load intel-compilers
module load GCC
module load PGI

Note:

Fortran programmers — note these are entirely separate from and have nothing to do with
Fortran modules

37/79

Effective Use of Clusters Compilers

. . . ac 2T
Choosing the compiler (toolchain) m::egl £

The ARC environment is built using the EasyBuild framework and this standardises the naming
of certain compiler types and also gathers them together with popular libraries such as
BLAS/LAPACK and MPI to form what is known as a toolchain.

For example you can load the GCC 14.3.0 compiler alone (not recommended) using:
module load GCCcore/14.3.0

Or GCC with compatible binutils and zlib (recommended) with:

module load GCC/14.3.0

Or, if you load the whole toolchain:

module load foss/2025b

38/79

Effective Use of Clusters Compilers

— . =
Choosing the Compiler (Toolchain) Eiu% llrg

foss/2025b loads the following modules:

1) GCCcore/14.3.0 9) hwloc/2.12.1-GCCcore-14.3.0 17) OpenMPI/5.0.8-GCC-14.3.0

2) zlib/1.3.1-GCCcore-14.3.0 10) OpenSSL/3 18) OpenBLAS/0.3.30-GCC-14.3.0

3) binutils/2.44-GCCcore-14.3.0 11) libevent/2.1.12-GCCcore-14.3.0 19) FlexiBLAS/3.4.5-GCC-14.3.0

4) GCC/14.3.0 12) UCX/1.19.0-GCCcore-14.3.0 20) FFTW/3.3.10-GCC-14.3.0

5) numactl/2.0.19-GCCcore-14.3.0 13) libfabric/2.1.0-GCCcore-14.3.0 21) gompi/2025b

6) XZ/5.8.1-GCCcore-14.3.0 14) PMIx/5.0.8-GCCcore-14.3.0 22) FFTW.MPI/3.3.10-gompi-2025b

7) libxml2/2.14.3-GCCcore-14.3.0 15) PRRTE/3.0.11-GCCcore-14.3.0 23) ScalAPACK/2.2.2-gompi-2025b-fb
8) libpciaccess/0.18.1-GCCcore-14.3.0 16) UCC/1.4.4-GCCcore-14.3.0 24) foss/2025b

Key:

Black — General modules

Blue — Compiler modules

Red — MPI related modules
Green — Maths library modules

39/79

Effective Use of Clusters Compilers

Choosing the compiler (toolchain)

For more information on available toolchains see:
https://docs.easybuild.io/en/latest/Common-toolchains.html#common-toolchains

N.B. Not all toolchains will be available on ARC. Use module spider to check.

40/79

https://docs.easybuild.io/en/latest/Common-toolchains.html#common-toolchains

Effective Use of Clusters Compilers

ac ¢
Compiler Performance gz .I:

As an example of how the compiler can affect the run time here are two examples of
DL_POLY_4 run on 16 cores of ARC (one single node) with the three different compilers.

Versions of the compilers are indicated. Times are in seconds.

Runtime (s)
Compiler
Sodium Chloride Gramicidin
gcc 4.8.2 241.686 189.514
Intel 14.0.2 342.201 246.520

Portland Group 13.10-0 205.602 129.827

41/79

Effective Use of Clusters Compilers

Invoking the compiler

* However it's not just which compiler you use, it's also how you invoke it — this usually
makes more difference than the choice of compiler

® So let’s have a look at how a compiler works in practice...

® There are actually a number of stages, but only two are of interest to us

» Compilation
» Linking

42/79

Effective Use of Clusters Compilers

Compilation grg T

* Remember one program can be contained in many source files

® Compilation is the stage that takes an individual file and translates it into instructions the
computer can understand.

* These instructions are placed in an object file with a . o suffix

® You can compile only (no linking) by use of the -c flag:

[user@arc-interactive ~]$ ls

file.f90

[user@arc-interactive ~]$ gfortran -c file.f90
[user@arc-interactive ~1$ ls

file.f90 file.o

43/79

Effective Use of Clusters Compilers

ac -
Linking 2ITH

* Remember that a program can be in many different source files
¢ Linking takes all compiled object files and links them together into a single executable

¢ Linking is normally managed through the compiler tool itself (which uses the default linux
linker 1d to do the work)

[user@arc-interactive ~]$ ls

file1.f90 file2.f90 file3.f90

[user@arc-interactive ~]$ ifort -c filel.f90
[user@arc-interactive ~]$ ifort -c file2.f90
[user@arc-interactive ~]$ ifort -c file3.f90
[user@arc-interactive ~]$ ls

file1.f90 filel.o file2.f90 file2.o0 file3.f90 file3.o
[user@arc-interactive ~]$ ifort filel.o file2.o0 file3.0 -0 exe
[user@arc-interactive ~]$ ls

exe filel.f90 filel.o file2.f90 file2.o0 file3.f90 file3.o

44/79

Effective Use of Clusters Compilers

arc e
Compile and link flags e III:

adval
s
‘computing

We have already used flags to change the (default) behaviour of the compiler and linker
» -c specifies ‘compile only’ and -o specifies the executable file

All compilers have many, many flags
Similarly, linkers have many flags

» the most important are those telling the linker where to find files (esp. libraries)
The usual flags at the compile stage include

Help with debugging the program

Making sure the programmer sticks to international standards
Telling the compiler where to find files — e.g. -1 for include files
Optimisation flags (these are the most important flags for us)

v

v vy

45/79

Effective Use of Clusters Compilers

N @
Optimisation flags arc l.I:

adval
s
‘computing

All compilers have a flag of the form -ON where N is an integer, typically in the range 0 to 3

Use of this will make the compiler analyse each file it is working on in an attempt to
produce a faster executable code
The larger the number, the harder it will try to do so:
» -00 — don't optimise the code
» -01 — do quick and easy optimisations
» -02 — try hard to get the best performance
» -03 — try really hard to get the best performance!
Not quite a free lunch
» Longer compiler times
» More likely to show up compiler bugs
» Also more likely to show up software bugs in strange ways...

But you should really use the highest of these for productions runs!

46/79

Effective Use of Clusters Compilers

arc e
What difference does it make? s l'I:

computing

Table: Compiled with -00 flag

Runtime (s)
Compiler
Sodium Chloride Gramicidin
gcc 4.8.2 241.686 189.514
Intel 14.0.2 342.201 246.520
Portland Group 13.10-0 205.602 129.827
Table: Compiled with -03 flag
Runtime (s)
Compiler
Sodium Chloride Gramicidin
gcc 4.8.2 115.956 84.919
Intel 14.0.2 99.942 76.556

Portland Group 13.10-0 108.292 78.945

47 /79

Effective Use of Clusters Compilers

Other optimisation flags gﬁgﬁ

¢ All compilers have many optimisation flags
* Unfortunately apart from -0 they are almost always specific to the compiler
» You will have to look at the man page or the user guide
* Some suggestions (apply to all languages we have considered):
gcc -03 -funroll-loops -march=native ...
icc -03 -xHost -ipa ...
* ipa = inter-procedural analysis, analyses all source code (not just one file at a time),
looking for optimisation opportunities across files

® -ipacan MASSIVELY increase compile time

48/79

Effective Use of Clusters Compilers

N @
Optimisation Flags g:":(::ﬂ; 4 §
Table: Table:
Runtime . Compilation Runtime
gec flags NaCl (s) icc flags time (s) Nacl (s)
-00 241.686 -00 65 342.201
-01 132.373 -01 142 114.795
-02 120.537 -02 237 99.47
-03 115.596 -03 267 99.942
-03 -funroll-loops 119.578 -03 -xHost 285 96.769

-03 -funroll-loops -march=native 106.882 -03 -xHost -ipa 4202 97.516

49 /79

EIiTH

Short Break...

%iTH

Makefiles, MPI, & The Linker

Effective Use of Clusters Makefiles, MPI, & The Linker

arc e
In Practice — the ‘Makefile’ e l'I:

You don't always compile the whole program from the command line

¢ Often something called a Makefile is supplied which will automate the build process. This
can also be generated by Automake or CMake.

* How to set the compiler and compiler flags in the case will vary from case to case
However...

e Commonly you set a variable called CC to the name of the C compiler

* And one called FC or F90 for the Fortran compiler

® The C compile flags are usually called CFLAGS
And the Fortran compile flags FFLAGS, FCFLAGS or FO0FLAGS

52/79

Effective Use of Clusters Makefiles, MPI, & The Linker

Example Makefile Smrc ZT 5

ices

servi

serial compiler

cC = icc

compiler flags

CFLAGS = -02 -xHost -Wall

include files

INC = -I$(MKLROOT)/include

libraries

LDFLAGS = -L$(MKLROOT)/lib/intel64 -openmp -mkl=parallel -lpthread -lm

rules
.SUFFIXES:
.SUFFIXES: .c .h .o

.C.0:
$(CC) $(INC) $(CFLAGS) $(COPTS) -c $<

.DEFAULT: blas

blas: blas_demo.o blas_demo_aux.o
$(CC) $(CFLAGS) $(COPTS) -o blas_demo blas_demo.o blas_demo_aux.o $(LDFLAGS)

53/79

Effective Use of Clusters Makefiles, MPI, & The Linker

Compiling MPI programs grg ZT

® Some parallel programs use MPI
» As discussed already
® These should be compiled using the MPI wrapper for the compiler
» Usually called mpicc/mpif90
* This takes exactly the same flags as the normal invocation of the compiler
» Infact all it really is is the normal invocation with a few extra flags added for you!

54/79

Effective Use of Clusters Makefiles, MPI, & The Linker

Linker flags arc ir

adval
s
‘computing

Similar to the compile stage the linker can also use many flags
By far the most important of these for us are

» -0 which names the executable
» flags to tell the linker where to find ‘extra’ object files

This last point takes us towards libraries, our next point

Libraries allow us to use very efficient code that somebody has already written
» And so more efficiently use the cluster

55/79

EiTH

Libraries

Effective Use of Clusters Libraries

Use the Centrally Installed Libraries! orc lT

researc

When we install software on ARC systems we always try to install software using the best
performing libraries — the toolchains help here.
This is why you should always use the modules we provide

» Unless you have a very specific need

The performance of python, MATLAB, R,... really depends on these — use the centrally
installed software if at all possible and don’t install your own.

Your first option should always be to use the toolchain libraries!

57/79

Effective Use of Clusters Libraries

Useful Libraries — BLAS and LAPACK acIT

researc

* There are many useful libraries for Scientific computing and I'll mention a few over the
next few slides
® Possibly the most important are
» BLAS — Basic Linear Algebra Subprograms
» LAPACK — Linear Algebra Package
® Reference versions are available from https://www.netlib.org

¢ However you should not use these
¢ Rather you should use one of the optimised implementations

» MKL on Intel
» ACML on AMD
» OpenBLAS — Portable, optimised BLAS, continuation of GotoBLAS

® ARC machines mainly use Intel CPUs MKL is provided as part of the intel toolchain.
OpenBLAS is also available.

58/79

https://www.netlib.org

Effective Use of Clusters Libraries

Other useful Scientific Libraries

FFTW — the de facto method for ffts (https://www. fftw.org)

Boost — libraries for C++ programmers

GSL — GNU Scientific Library (https://www.gnu.org/software/gsl)

ScalLAPACK — distributed memory version of LAPACK

NetCDF and HDF5 — libraries to make input/output easier and data more portable

59/79

https://www.fftw.org
https://www.gnu.org/software/gsl

Effective Use of Clusters Libraries

Parallel libraries grg lT

Some libraries are parallel

» They can use multiple cores to accelerate the computation
ScalAPACK is distributed memory

» To use it requires code changes

® But many implementations of BLAS and LAPACK can use shared memory parallelism
® So we can use this to make our calculations faster without changing the code

* As we saw previously — maths libraries are made available with the foss or intel
toolchains.

60/79

EIiTH

Storage

Effective Use of Clusters Storage

Use of Storage orc = | T

researc

® Getting the best out of many applications depends on getting the best out of using the
filesystem where the files your application uses are read from or written to

* How to best use the filesystem is cluster specific, but what is best for ARC often can be
adapted with only small changes for other clusters
® There are 2 main issues

@ Amount of I/0 — i.e. using lots of disk
® Efficiency of I/0 — i.e. accessing the filesystem as quickly as possible

62/79

Effective Use of Clusters Storage

Large Disk Usage

On ARC systems you have two areas on the disk
A small ‘home’ area — this is where you log into
A much larger ‘data’ area

Thus for your batch jobs we strongly suggest you use the data area
The data area can be accessed from home via cd $DATA

Welcome to ARC

Available clusters are:
arc (large parallel jobs)
htc (single-core to single-node jobs

* 0% X X % X

* % X % % X

Last login: Thu Oct 06 10:56:05 2022 from somewhere.arc.ox.ac.

[user@arc-login ~1$ pwd
/home/ouit0554
[user@arc-login ~]$ cd $DATA
[user@arc-Llogin user]$ pwd
/data/myproject/user

uk

ices

C]ﬂ:
it

servi

63/79

Effective Use of Clusters Storage

Faster Disk Usage grg T

* ARC also provides faster $SCRATCH space which is allocated on a per job basis:

» This requires input data to be copied to the $SCRATCH area before running the application
and the results copied back to $DATA upon completion.
This must be performed in your submission script.

¢ for detailed information and examples on how to use $SCRATCH see the following page:
https://arc-user-guide.readthedocs.io/en/latest/arc-storage.html

64/79

https://arc-user-guide.readthedocs.io/en/latest/arc-storage.html

Effective Use of Clusters Storage

arc e
Efficient Disk Usage e l'I:

* The filesystem on ARC systems is something called NetApp.
* This is a ‘high performance filesystem’

* However the way it works means that you will get best performance if you use a small
number of large files accessing them in large chunks

» Actually this is true for most filesystems

® Storing and accessing a very large number of small files will cripple your performance on
ARC

* We have had cases of users having 100 000+ small (a few kbyte) files all in one directory.
This will lead to very slow performance

* And what is more as the disks are shared it's not just slow for you, it's slow for everybody!

65/79

Effective Use of Clusters Storage

A Final Word on storage

® Please note the disks on ARC systems are not there for permanent storage

® They are not backed up
¢ After you have generated your data you should transfer it back to your ‘home machines’
via SFTP or similar mechanisms, and then delete it from ARC.

66/79

EiTH

Measures of Performance

Effective Use of Clusters Measures of Performance

s

4

arc
The most important measure Y]

servi

In this section we will introduce a few measures of performance for computer codes,
both serial and parallel

But never forget that what you ultimately want to maximise is the amount of science per
second that you generate

This may be as simple as minimising the run time of your program

e But it may involve other factors

» Using a more familiar application
» Getting the best out of your computer budget
» Turnaround on the cluster
* Higher core counts tend to turn around more slowly

68/79

Effective Use of Clusters Measures of Performance

Parallel measures of performance g;f T

* Measuring the performance of parallel codes generally asks questions related to how
much better are things running on multiple cores when compared to running on a single
core or node

e We'll look at

» Speed Up
» Cost

69/79

Effective Use of Clusters Measures of Performance

Speed Up grg l T

¢ Speed up answers the question ‘How much faster does my program run if | use P cores’

So if | use 100 processors it will run 100 times faster, right?

And it can’t run more than 100 times faster, right?

Also, | have 100 times as much memory so | can run 100 times bigger a problem, right?

70/79

Effective Use of Clusters Measures of Performance

Absolute Speed Up

* What we should really measure is Absolute Speed Up

T

S

P =T1p)

* Where T is the time to run the best implementation of the serial program, and T(P) is the
time to run the parallel code on P cores

» You may use a different algorithm in the parallel code from the serial code

71/79

Effective Use of Clusters Measures of Performance

Relative Speed Up

* However what is almost always measured is Relative Speed Up

T(1)

S(P) = TP

* i.e. we compare the speed against the time taken on 1 core by the parallel program

® Saves writing both the serial and parallel code

72/79

Effective Use of Clusters Measures of Performance

Linear Speed Up e I

® Linear speed up is simply
S(P)=P

® So if you run on P processors, it runs P times quicker

This is the ideal situation

Also called perfect scaling

73/79

Effective Use of Clusters Measures of Performance
What does it look like? SIC

300

250

200

150
== Speed Up

=4 Ideal

Speed Up

100

50

0 50 100 150 200 250 300

Cores

Figure: DL_POLY, 512 000 particles of NaCl on ARC

74/79

Effective Use of Clusters Measures of Performance

So Why is it Not Perfect!?

* Many Possible Reasons!
* We've touched on load balance
* To go beyond this again is beyond what we are trying to cover here

The main thing is NOT to expect perfect speed up
And to be aware that using too many cores can actually DEGRADE your performance

75/79

Effective Use of Clusters Measures of Performance

So How Many Cores Should I Use grg ZT (

e Well, firstly don’t put more processes or threads on a node than there are cores!!

* |t depends...
¢ |t depends on the code you are running
» It may have special parallel options which you should learn about

¢ |t depends on the case you are running

* |t depends on the computer you are running on

* More cores will cost you more

* More cores may even slow you calculation down

* More cores will probably mean slower turn around

* |t depends upon you and how important cost and turnaround are
e BUT DON'T JUST GUESS!

® One thing you can do is to run a little experiment

76/79

Effective Use of Clusters Measures of Performance

An Experiment gﬁgﬁ

* Many Scientific codes do the same kind of thing many times

» e.g. timesteps
» e.g. iterationsin a solver

® So plot the speed up curve for a few iterations and from that decide on a good number of
cores for you

® For instance a full DL_POLY run will require at the very least many thousands of times steps

® So first run it for 100 timesteps on 1, 2, 4, 8, 16,... cores and see what the speed up curve
looks like

® And then use that number of cores for the full run

77/79

Effective Use of Clusters Measures of Performance

Summary

It's very difficult to predict the performance of a real application a priori

So you will have to do experiments
® Many applications are iterative

® So measure the performance on a number of different cores for a small number of
iterations and use that to work out what to use for the full run

78/79

Effective Use of Clusters

ac AT IE
Thank You! gz Te S

Any Questions?

79/79

	Introduction
	Batch Scripts
	GPUs
	Application Containers
	Memory Efficiency
	Improving Performance
	Compilers
	Short Break…
	Makefiles, MPI, & The Linker
	Libraries
	Storage
	Measures of Performance
	

